A contact-stabilized Newmark method for dynamical contact problems
نویسندگان
چکیده
منابع مشابه
The contact-stabilized Newmark method: consistency error of a spatiotemporal discretization
The paper considers an improved variant of the contact-stabilized Newmark method by Deuflhard et al., which provides a spatiotemporal numerical integration of dynamical contact problems between viscoelastic bodies in the frame of the Signorini condition. Up no now, the question of consistency in the case of contact constraints has been discussed for time integrators in function space under the ...
متن کاملA Perturbation Result for Dynamical Contact Problems
This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover, it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method. We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies whic...
متن کاملDomain decomposition method for contact problems with small range contact
A non-overlapping domain decomposition algorithm of Neumann–Neumann type for solving variational inequalities arising from the elliptic boundary value problems in two dimensions with unilateral boundary condition is presented. We suppose that boundary with inequality condition is ‘relatively’ small. First, the linear auxiliary problem, where the inequality condition is replaced by the equality ...
متن کاملA Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics
In this work we consider a stabilized Lagrange multiplier method in order to approximate the Coulomb frictional contact model in linear elastostatics. The particularity of the method is that no discrete inf-sup condition is needed. We study the existence and the uniqueness of solution of the discrete problem.
متن کاملA Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis
We introduce a Nitsche-based formulation for the finite element discretization of the unilateral contact problem in linear elasticity. It features a weak treatment of the non-linear contact conditions through a consistent penalty term. Without any additional assumption on the contact set, we can prove theoretically its fully optimal convergence rate in the H(Ω)norm for linear finite elements in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Engineering
سال: 2008
ISSN: 0029-5981,1097-0207
DOI: 10.1002/nme.2119